Skip to main content
Ctrl+K

mcf 0.9.0 documentation

  • Getting started
  • User Guide
  • Algorithm Reference
  • Python API
  • FAQ
    • Changelog
  • GitHub
  • PyPI
  • Getting started
  • User Guide
  • Algorithm Reference
  • Python API
  • FAQ
  • Changelog
  • GitHub
  • PyPI

Index

_ | A | E | M | O | P | R | S | T | V | W

_

  • __version__ (mcf_main.ModifiedCausalForest attribute)
    • (optpolicy_main.OptimalPolicy attribute)

A

  • allocate() (optpolicy_main.OptimalPolicy method)
  • analyse() (mcf_main.ModifiedCausalForest method)

E

  • estrisk_adjust() (optpolicy_main.OptimalPolicy method)
  • evaluate() (optpolicy_main.OptimalPolicy method)
  • evaluate_multiple() (optpolicy_main.OptimalPolicy method)
  • example_data() (in module example_data_functions), [1]

M

  • McfOptPolReport (class in reporting)
  • ModifiedCausalForest (class in mcf_main)

O

  • OptimalPolicy (class in optpolicy_main)

P

  • predict() (mcf_main.ModifiedCausalForest method)
  • predict_different_allocations() (mcf_main.ModifiedCausalForest method)
  • predict_iv() (mcf_main.ModifiedCausalForest method)
  • print_time_strings_all_steps() (optpolicy_main.OptimalPolicy method)

R

  • report() (reporting.McfOptPolReport method)

S

  • sensitivity() (mcf_main.ModifiedCausalForest method)
  • solve() (optpolicy_main.OptimalPolicy method)
  • solvefair() (optpolicy_main.OptimalPolicy method)

T

  • train() (mcf_main.ModifiedCausalForest method)
  • train_iv() (mcf_main.ModifiedCausalForest method)

V

  • version (reporting.McfOptPolReport attribute)

W

  • winners_losers() (optpolicy_main.OptimalPolicy method)

© Copyright 2024, Michael Lechner.

Created using Sphinx 8.2.3.

Built with the PyData Sphinx Theme 0.16.1.