mcf_main.ModifiedCausalForest.analyse#
- ModifiedCausalForest.analyse(results, new_keywords=None)#
Analyse estimated IATEs with various descriptive tools.
- Parameters:
results (Dictionary) – Contains estimation results. This dictionary must have the same structure as the one returned from the
predict()method.new_keywords (Dictionary (or None). Default is None.) – Parameters of mcf instance to be changed. The keys in the dictionary are the parameters to be changed when running this method (and all methods that are run subsequently, like analyse or sensitivity), and the values corresponding to the keys are the new value (None is not allowed as new value). However, not all parameters can differ from those used during training. The following parameters can be changed, and thus specified as keys in this dictionary (some of these will however not influence the results of this method, but of other other used with the same instance): ‘gen_output_type’; ‘var_x_name_balance_test_ord’, ‘var_x_name_balance_test_unord’, ‘var_x_name_balance_bgate’, ‘var_x_name_ba’, ‘var_z_name_ord’, ‘var_z_name_unord’, ‘p_ba’, ‘p_ba_adj_method’, ‘p_ba_pos_weights_only’, ‘p_ba_use_x’, ‘p_ba_use_prop_score’, ‘p_ba_use_prog_score’, ‘p_ate_no_se_only’, ‘p_atet’, ‘p_gatet’, ‘p_bgate’, ‘p_cbgate’, ‘p_iate’, ‘p_iate_se’, ‘p_iate_m_ate’, ‘p_bgate_sample_share’, ‘p_gates_minus_previous’, ‘p_gates_smooth_bandwidth’, ‘p_gates_smooth’, ‘p_gates_smooth_no_evalu_points’, ‘p_gates_no_evalu_points’, ‘p_qiate’, ‘p_qiate_se’, ‘p_qiate_m_mqiate’, ‘p_qiate_m_opp’, ‘p_qiate_no_of_quantiles’, ‘p_qiate_smooth’ ‘p_qiate_smooth_bandwidth’, ‘p_qiate_bias_adjust’, ‘p_bt_yes’, ‘p_choice_based_sampling’, ‘p_choice_based_probs’, ‘p_cond_var’, ‘p_knn’, ‘p_knn_const’, ‘p_knn_min_k’, ‘p_nw_bandw’, ‘p_nw_kern’, ‘p_ci_level’, ‘p_se_boot_ate’, ‘p_se_boot_gate’, ‘p_se_boot_iate’, ‘p_se_boot_qiate’; ‘post_bin_corr_threshold’, ‘post_bin_corr_yes’, ‘post_est_stats’, ‘post_kmeans_yes’, ‘post_kmeans_no_of_groups’, ‘post_kmeans_max_tries’, ‘post_kmeans_min_size_share’, ‘post_kmeans_replications’, ‘post_kmeans_single’, ‘post_random_forest_vi’, ‘post_relative_to_first_group_only’, ‘post_plots’, ‘post_tree’.
- Raises:
ValueError – Some of the attribute are not compatible with running this method.
- Returns:
results_plus_cluster – Same as the results dictionary, but the DataFrame with estimated IATEs contains an additional integer with a group label that comes from k-means clustering.
- Return type:
Dictionary